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Abstract. Acoustic plasmons in a two-component degenerate Fermi gas are analysed, using 
the random-phase approximation dielectric function with exact analytic continuation into 
the lower half of the complex frequency plane. The acoustic plasmon spectrum, in reduced 
variables, depends on four parameters-the ratio of Thomas-Fermi screening wavevectors 
of the two plasmas, the ratio of Fermi velocities, and the densities of the two plasmas. The 
dependence of the spectrum on these parameters is surveyed. The first two of the above- 
mentioned parameters are the most important. Acoustic plasmons can exist even when the 
two plasmas have equal effective mass. The range of parameters giving weakly damped 
acoustic plasmons is described. The spectrum has an abrupt cut-off (maximum wavevector); 
this corresponds to the onset of Landau damping in both plasmas. The experimental results 
of Pinczuk, Shah and Wolff on acoustic plasmons in the GaAs electron-hole plasma are 
reanalysed. For this purpose the extension to a three-component plasma is made, since the 
light holes, although few in number, have a significant effect on the results. In this system 
the ‘upper acoustic plasmon’ does not exist, contrary to what is implicitly assumed by 
Pinczuk, Shah and Wolff in their analysis. The ‘lower acoustic plasmon’ does exist, and its 
phase velocity agrees, within the errors of theory and experiment, with their experimental 
result. 

1. Introduction 

This paper is principally about acoustic plasmons in semi-metals or semiconductors 
whose charge carriers may be modelled as a two-component degenerate Fermi gas 
(figure 1). A brief report on the theory and results for zero-wavevector plasma waves 
was given in Cottey (1985). The two components are labelled by i (= 1,2)  , and component 
i has v i  spherical pockets, all equivalent by symmetry, with Fermi wavevector kFi, Fermi 
velocity uFi, Fermi energy eFi, effective mass mi* and eFi = h2k&/2mT . We label the two 
plasmas such that um < uF1. 

The two-component plasma sustains two plasma modes, whose spectra are sketched 
qualitatively in figure 2. In the case of negligible damping the polarisations of the two 
plasmas have relative phase 0 ( E )  for the ordinary (acoustic) plasmon. The ordinary 
plasmon is often called the optic plasmon, but we avoid this term because the analogy 
with optic phonons (and indeed also between acoustic plasmons and acoustic phonons) 
is not as close as figure 2 suggests. Thus, when the parameters of the two plasmas become 
the same, so a one-component system is achieved, it is the acoustic plasmon that 
disappears. 

0953-8984/89/101809 + 21 $02.50 @ 1989 IOP Publishing Ltd 1809 
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Figure 1. The model semimetal. There are two kinds (i = 1 , 2 )  of carrier. 

The two types of carriers may be both electrons, or both holes, or one of each. The 
terms ‘light’ and ‘heavy’ to distinguish the two types of carrier, though commonly used 
in semiconductor physics, are not the best terms for our purpose, for, as we shall see, 
acoustic plasmons can exist when the two types have the same mass. What is essential 
for the existence of acoustic plasmons is that the two Fermi velocities be different. 

We shall treat the ions in a jellium model, which nevertheless supplies a constant 
‘background’ relative permittivity Ebg. The value of &bg can be large, so the Coulomb 
interaction, --e2/&bg, is much reduced. Then the high-density regime ( r $  S 1) may be 
reached, even though the carrier density n is modest. The conditions under which a 
constant &bg may be used, and the appropriate value, will be discussed in 0 5 and in 
another paper, on applications of the present theory. 

Our analysis of acoustic plasmons is based on the frequency- ( U )  and wavevector- 
( q )  dependent longitudinal dielectric function &(q, w ) .  The dispersion relations of the 
plasma modes are the solutions of 

&(q,  w )  = 0. (1) 
We consider a plasma wave with amplitude -exp[i(qx - ut)] with q real and positive, 
and o = w’ + iw” complex. A damped wave has w” < 0. 

We use the random-phase approximation (RPA) in order to have an explicit form for 
E. This function is usually named after Lindhard (1954). It appears not to be generally 
recognised that Lindhard’s form is valid only for w” > 0 or w = 0+,  nor that the general 
form had been found earlier by Silin (1952a). 

The calculation of E involves, for any plasma component, and for q in the x-direction 
as we are assuming, an integration with respect to k,, the x-component of wavevector k 
of a charge carrier. The integrand (for each component) has a simple pole in the complex 
k,-plane. Landau (1946) pointed out that the integration must be on a contour in the 
complex k,-plane which passes below all poles of the integrand. For w” > 0, the pole 
occurs in the upper half of the complex k,-plane, and integration with respect to k, along 
the real axis is valid. For U” < 0, the path of integration must be deformed so as to pass 
beiow the pole. The pole then contributes a Cauchy term to the integral, and this term 
has the consequence that (1) has a solution with U’’ < 0. This Landau damping was 
calculated explicitly by Landau for a classical (Maxwell-Boltzmann statistics) plasma. 

The corresponding treatment for a one-component degenerate Fermi gas was made 
by Silin (1952a, 1955) and presentations of the results in English appeared by Kli- 
mintovich and Silin (1960,1961). The results are in an obscure notation (with conventions 
not fully explicit) and there are minor errors of presentation which are also different in 
different papers. Nevertheless, the results are correct apart from these minor errors, 
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and it is surprising that they have rarely been cited and apparently not taken further till 
1985. Cottey (1985) includes (equations (1) and (2) therein) a condensed statement of 
the RPA dielectric function with Landau damping, but it also contains an error of 
presentation; the term 2ni in equation (2) therein should be multiplied by the factor 
(1 - c2). In the present paper we give a full exposition of Silin’s dielectric function and 
its implications for acoustic plasmons, including numerically calculated acoustic plasmon 
spectra for a representative set of system parameters. 

Early works on acoustic plasmons in a degenerate two-component Fermi gas, or on 
the similar system of plasma-ion waves in a metal, are by Silin (1952b, 1955), Pines 
(1956), Pines (1963, pp 248-9) and Froehlich (1968). Those results are reviewed from 
the Lindhard dielectric function point of view by Platzman and Wolff (1973). In the case 
kF1 = kF2 and pocket degeneracies v 1  and v2  both equal to 1, the acoustic plasmon 
spectrum for small q and uF2 uF1 is w = uq with constant complex phase velocity 

U = U ’  + i u ”  = (vF1uF2/3)1/2 - inuF2/12. 

The derivations of this result, other than Silin’s, are not entirely satisfying. The singular 
integral in E leads to a logarithmic term, and its phase is chosen tacitly and on physical 
grounds. For example, assuming the In function to have its principal phase (the normal 
convention in the absence of other indication) leads to internal inconsistency in the 
argument of Platzman and Wolff. 

The difficulties are compounded when the restriction vF2 < uF1 is lifted, even in the 
q = 0 limit. Thus Appel and Overhauser (1982) calculated the spectrum of acoustic 
plasmons of a two-component degenerate Fermi gas by solving coupled Boltzmann 
transport equations. They included an exchange-correlation term, and assumed q small. 
The exchange-correlation term makes a quantitative but not a qualitative difference. If 
it is omitted, direct comparison with earlier treatments, and with ours, is possible. The 
RPA dielectric function E ( q ,  w )  which we use gives, in the limit q -+ 0, with w / q  constant. 
the same theory as that of Appel and Overhauser, provided w > 0 or w = O + .  Appel 
and Overhauser solved their transport equations numerically and found three acoustic 
plasma modes. 

Oliva and Ashcroft (1984) pointed out that Appel and Overhauser’s conclusions are 
incorrect and flow from an incorrect treatment of damping. Appel and Overhauser use 
a theory valid for w” > 0 or w = O + ,  and calculate the damping by a perturbative 
method. This approach is not reliable. 

Schaefer and von Baltz (1987) have extended the analysis of the transport equations, 
including a phenomenological term describing impurity scattering. Other theoretical 
studies of acoustic plasmons are by Chakraborty (1984), Ganguly and Wood (1972), 
Oliva and Ashcroft (1982), Pashitskii (1969), Rothward (1972), Sinha and Varma (1983) 
and Vignale and Singwi (1982,1985). 

Studies of modes analogous to acoustic plasmons in inhomogeneous (usually layered) 
media are by Blank and Gulyaev (1984), Das Sarma and Quinn (1982), Heitmann (1986), 
Lomtev and Bol’shinskii (1985), Olego et a1 (1982) and Takada (1977). Experimental 
evidence for acoustic plasmons is discussed in § 5 ,  with reanalysis of the experimental 
results of Pinczuk et a1 (1981) on the GaAs electron-hole plasma. 

Apart from the early works by Silin (1952b, 1955) and Klimintovich and Silin (1960, 
1961), and the recent work by Cottey (1985), we know of no analyses of plasmon damping 
in a degenerate plasma based on a fully deductive treatment starting from the RPA 
dielectric function with its exact analytic continuation into the lower half of the complex 
frequency plane. We consider that this method is, however, the safest way to analyse 
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Figure 2. Sketch of the dispersion curves of the 
ordinary and acoustic plasmons in a two-com- 

Figure 3. The contour in the complex /+plane 
of the singular integral involved in Silin's dielec- 

ponent plasma. tric function ~ ( q ,  U )  with U'' < 0 (damped oscil- 
lation). 

acoustic plasmons. It is exactly consistent with the principle of causality. Its limitations 
are solely those of the RPA. 

In the following sections we present a derivation and discussion of the RPA dielectric 
function, in the lower half of the complex frequency plane, of a degenerate Fermi gas. 
This is done first for a one-component and then for a two-component Fermi gas. The 
limits of validity of the RPA are discussed. Then the plasmon dispersion curves-the 
solutions of (1)-are presented. After the extension of the theory from two to three 
components, the results are applied to the gallium arsenide electron-hole plasma. The 
paper ends with a general discussion of the range of phenomena that may be expected 
for system parameters achievable in real semi-metals and semiconductors. 

2. Themodel 

The plasma model was defined in 0 1 (see also figure 1). We define the dielectric function 
~ ( q ,  w )  as (permittivity of system)/eoeb, where is the permittivity of vacuum. The 
dielectric function E is related to the polarisation function ~ ( q ,  CO) of the carrier gas by 

E = 1 - e2X/EoEbgq2 (SI units). 

In the RPA, x is given by 

where n(k) is the Fermi-Dirac occupation probability of a carrier state with wavevector 
k, 

fiw&,q = - ek = 6*(q2 + 2q - k)/2m* 

is the change of carrier energy upon the transition k + k + q and CO" > 0 or CO" = O+ . 
We assume the carrier pockets separated in k-space by wavevectors large compared 

with k,, and kn and the largest q of interest. Then, since the gases are assumed degener- 
ate, only intra-pocket transitions occur, and the integral in (2) has v equal contributions 
from plasma 1 and v 2  equal contributions from plasma 2. Each of these contributions 
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depends only on q (= 141). 

3. One-component plasma 

In this section we drop the component label i. 

3.1. Dielectric function 

Considering a given pocket, we take the origin of k at the centre of the pocket. The 
analytic continuation is clearer if we keep the temperature T finite at this stage, so 

n(k)  = (1 + exp[(k: + k: - k ; ) / k + ] ) - l  

where k, is the magnitude of the projection of k into the plane normal to q and 
k$ = 2m*kB T/h2. Here k ,  is real, but when w” < 0, k, may be complex. 

The first, n(k) ,  of the two n-terms in equation ( 2 )  gives, after the k, integration has 
been done, 

dkx  k+ ln{l + exp[(k; - k ; ) / k + ] }  SI-: 
where 

b = (-im*/hq)(w - hq2/2m*). 

This holds for any fixed complex k,, and in the limit T+ 0 is 

Dealing first with the case w“ > 0, we note that the k, integration is then from - kF to kF 
on the real line. It is convenient to express E as a function of 

(i) the reduced wavevector z = q/2kF and 
(ii) the reduced phase velocity U = w/quF instead of q and o. The integral in (3)  is 

k$[2(z - U )  + 8 + ( z  - U ) ]  

%+(Cl = (1 - C2) W(C + W ( C  - 111. 

where 

(4) 
Throughout this paper the In function has its principal phase, i.e. -JG < phase CJG. 

find for a one-component plasma 
Calculating the n(k + q) term in (2) in like manner, and summing over v pockets, we 

E ( Z ,  U )  = + (KTF/kFl2g+(z, U )  (U” > 0 or U” = 0+) 

where 

g+(z,u)=(22) -*{;+(&)-1[%+ ( z - U )  -8, ( - z - U ) ] }  

KTF = 3 ‘Iz wp/uF 
and n = vk3F/3n2 is the carrier density. The property 

(u”>O or u”=O+) 

( 5 )  
up = (ne2/m*q,cb,)’/2 

E ( 0 ,  w )  = 1 - ( o p / w ) 2  
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shows that wp is the usual plasma frequency parameter, and the property 

&(q, - (KTF/q)2 + O(l)  q+O 
shows that KTF is the usual Thomas-Fermi screening wavevector. 

If w” < 0 (damped oscillation) the contour of the k, integration (3) is deformed to 
pass below the pole at k, = ib (figure 3). If this pole lies in the region where the Fermi- 
Dirac function has the value 1, i.e. Re(k:) < k ; ,  its effect is to add 2ni to the In in (4), 
i.e. 2ni(l - c2) is added to 9,. Thus the general expression for the dielectric function 
of a one-component degenerate Fermi gas with v spherical pockets having a parabolic 
energy-wavevector relation is 

E(z ,  U) = + (KTF/kF)2g(z, (6) 

9 = B + + A 9  

where g is the same as g, (equation (5)) except that 9, is replaced by 

where 

< = f‘ + ic”.  

The function E’ (E = E’ + id’) is discontinuous on the lines 

11) = 1(1 + U”2)1 /2  +- 21 (7)  
but E” is continuous. These discontinuities are consequences of the discontinuity of the 
Fermi-Dirac function. We find it convenient to define three regions (figure 4) of complex 
u-space (with z fixed). The lines (7) separate distinct regions. 

If the damping U” is zero, equations (7) become 

U ’  = 11 5 z / .  
The functions 11 * z I are plotted in figure 5 ,  together with their more conventional 
representation as w versus q. The lines 1 + z and z - 1 ( z  3 1) are boundaries of the 
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Figure 5. The lines of discontinuity, relating to the electron-hole pair continuum, in a 
one-component plasma without damping. ( a )  Frequency w versus wavevector q.  ( b )  
reduced phase velocity U = o/quF versus reduced wavevector z = q/2kF. 

particle-hole pair continuum. The line 1 - z (0 G z S 1) also has a special significance 
in connection with the density of states %(w) of particle-hole excitations: d%/dw is 
discontinuous on this line. 

3.2. Range of validity of the RPA 

A precise characterisation of the accuracy of the RPA is not known. We shall follow the 
usual approximate criteria for validity of the RPA (Platzman and Wolff 1973). The RPA 
is a high-density theory, and the criterion for sufficiently high density is, for a one- 
component single-pocket plasma, 

r,* 6 1  (8) 
where 

a $ r t  = R ,  = (3/4nn)'I3 

and 

a$ = 4 n q , ~ ~ ~ i i ~ / e ~ m * .  

Condition (8) comes from the condition 
mean KE per particle 

characteristic PE per particle 
= ( 3 h 2 k ~ / 1 0 m * ) / ( e 2 / 4 n & ~ ~ b g R s )  b &(93r/4)*13. ( 9 )  

If the KE/PE ratio is not sufficiently large, the charge carriers will take up a more complex 
correlation than that given by the simple screening in the RPA. 

The RPA is also inaccurate for waves with too large wavevector (Platzman and Wolff 
1973), and we take the usual validity condition 

q qmax = w p / v ~  = 3 - ' 1 2 K ~ ~ .  (10) 
In the case of v pockets we shall write rs*sp for the single pocket reduced density 
parameter, defined by 

(43r/3)(r~spag)3 = v/n 

II being the carrier density with all pockets counted. 
Parameters KTF,  k F  and r&, are related by 

( K T F / k F ) 2  = (4/n)(4/93r)1/3 Vr,* , ,  = 2cV 
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where c is introduced as a convenient shortened notation, and 

c 2 r,*,,/3 

to a close approximation. 
Equation (10) may be rewritten in the forms 

Z S Z,,, = qmax/2kF = ( c v / ~ ) ~ / *  5 (r,*,,v/18)’/*. (12) 

3.3. Ordinary plasmon 

For completeness we state briefly the results in the one-component case. Equation ( 1 )  
gives but one dispersion curve. (Oliva and Ashcroft (1984) showed that the application 
of Appel and Overhauser’s (1982) method to a one-component plasma gives, 
erroneously, two solutions.) At small wavevector, w = wp and is in region 0 (figure 4). 
There is no damping until wavevector qc = 2kFzc is reached, at which, according to this 
RPA theory, the plasma dispersion branch meets the line 1 + z (figure 5(b)) .  The critical 
value z ,  is usually near to, or greater than, zmax (defined in equation (12 ) ) .  

4. Two-component plasma 

4.1. Dielectric function 

We restore the component index i (= 1 , 2 )  and choose 2 as the reference plasma, i.e. the 
reduced wavevector and phase velocity are now defined by 

z = q /2kn  U = w/q’uF2. 
We also write r, for un/uF1 and rk for kn /kF1 .  

allowing only for intra-pocket transitions as explained in § 2 ,  is 
Then, from (6) and (ll), the dielectric function of the two-component plasma, 

E ( Z ,  U )  = 1 + 2c1 v l g ( r k z ,  r ,u)  + 2c2v2g(z ,  U )  

ci = ( 2 / ~ ~ ) ( 4 / 9 n ) ’ / ~ r ~ ~ , ,  L- hr,*,,, 

where 

( i  = 1 , 2 )  
are convenient density parameters. 

depends on the four parameters c2v2,  c l v l ,  rk and r,. 
The dielectric function, in terms of the reduced wavevector and phase velocity, 

4.2. Discontinuities 

Now E ‘  has, in addition to the lines of discontinuity (7) associated with plasma 2 ,  the 
lines of discontinuity 

U ‘  = /(r;* + u’f2)1/2 * rkz/r , /  (13) 
associated with plasma 1. These lines are sketched in U’-U” space (with z fixed) in figure 
6 .  

We shall also find it convenient to compare u’(z)  with the functions 
d 2 ? ( z )  = 1(1 + u ” ( z ) * ) ~ / ~  k zI 

d l ,  ( z )  = l [ r i2  + u”(z)*]~/* -t r k z / r ,  1 

(14) 

(15) 

and 
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1+z [ l - r k z ) / r v  

q-z)( [ l ; r jz) / rv 4 U'  
0 1  

U" Figure 6. The lines of discontinuity 
of E '  in the complex u-plane for 
fixed z .  This figure is for the case 
z < 1 and z < (1 - rJ / ( r"  + rk) .  
Several other qualitatively distinct 
cases give obvious modifications of 
this diagram. Region 110, for 
example, means region I1 for 
plasma 1 and region 0 for plasma 
2. 

0 
z z 

Figure 7. (a) The lines of discontinuity 11 + z /  and 11 2 rkzl/ro for a two-component plasma 
with damping neglected; z = wavevector/2kn. (b)  Sketch (for small I) of the cor- 
responding functions, namely dzr, d,= (equations (14) and (15)) when damping U" is 
included. 

in a diagram (figure 7(b)). The special case U" = 0, when the d-functions become 11 2 z (  
and (1 2 rkzI/r, is represented in figure 7(a), which is the generalisation to the two- 
component case of figure 5(  b).  

4.3. Plasmons at zero wavevector 

The limit z +- 0 of E ( Z ,  U) may be taken in two ways, which give distinct plasma solutions 
of E = 0. If we keep w constant and non-zero, i.e. take lim z -+ 0 with uz = constant > 0, 
then E becomes 

1 - + w$)/w* ( m i i  = nie2/EOEbgmT) 
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Figure 8. Contours of U' ( '  . . ' )  and U" (-.-.-) for zero wavevector in the space of the 
parameters R ( = ( K ~ = / K ~ ~ , ) ' )  and rU (= un/uF1) .  Here U = U' + iu"is the reduced complex 
phase velocity of acoustic plasmons. 

and E = 0 has the ordinary plasmon solution with frequency (U',, + ~2,~)~'~. The gen- 
eralisation to a two-component plasma introduces no remarkable new features, either 
at z = 0 or for z > 0, and we will not discuss the ordinary plasmon further. 

If lim z + 0 is taken with U = constant (case of acoustic plasmon) the equation 
E = 0 becomes 

F(r,u) + RF(u) = 0 (16) 
where 

F(u)  = 1 + &U h[(u  - l ) / ( u  + I)] + 
and 

U" < 0 and u r 2  < 1 + u " ~  

otherwise 

R = ( K T ~ / K T F ~ ) ~  = r ~ c 2 v 2 / c 1 v 1  = r ~ v 2 / r , v 1 .  
Only two parameters, r,, and R ,  are needed to describe all zero-wavevector cases. The 
results of numerical solution of (16) for all r, (which is by definition Cl)  and for R S 15 
are shown in figure 8. (A small error in the contour U" = -0.5 in figure 1 of Cottey (1985) 
is here corrected.) The existence of the abrupt edges of the solution domain relates to 
discontinuities of E ' :  line OA is given by the relation 

which is the z = 0 limit of equations (7). Line AB is given by the relation 

U' = (1 + U''2)1/2 

U' = ( y ; 2  + U'12)1/2 

which is the z = 0 limit of equations (13). 

Rr; < 1 < R2 
When 
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equation (16) may be solved analytically, the result being 

U '  = (R/3)"2 U" = -nRr,/12. (18) 
This is essentially the special case in terms of which acoustic plasmons are usually 
discussed (for example, Silin 1952b, 1955, Pines 1963, Froehlich 1968, Platzman and 
Wolff 1973, Ruvalds 1981). Most of the discussions of acousticplasmons are subject also 
to the further restrictions 

v 1  = v 2  = 1 and n1 = n 2  (whence kF2 = kF1). (19) 

Then both of the inequalities (17) and the condition for relatively small damping 

JuttI/ut << 1 

all amount to 

mT e m , . .  

More generally, this condition is not necessary. Weakly damped acoustic plasmons can 
even exist with mT = m;. For example, a system with rk = ru = 0.25 and v2 /v1  = 4 has 
R = 1, and at zero wavevector U' = 1.03, U" = -0.039. Indeed, the damping is always 
small in the lower left corner of figure 8. In this region (say R S 1, r,  6 0.4R) there is an 
approximate analytic solution, namely 

u = l + 6 u  

with 

6u = 2[(1 + r , ) / ( l  - r , ) ] ' ~ / ~  exp[-2(1 + R-')] exp(-inr,/R). 

Since the damping is exponentially small, we should however expect to reach easily a 
regime in which the dominant damping mechanisms are beyond the RPA (collisions, or 
multi-particle processes). 

4.4. Acoustic plasmons at finite wavevector 

4.4.1. Validity of RPA. In the two-component plasma we use, as an approximate density 
condition, the criterion (9) with R, = (3/4nn)'13. Here n = n1 + n2 is the total carrier 
density for both plasmas. This condition leads to 

c1 vi/3 < S(1 + Rr;)/(l + Rr,)4/3 

where 

re  = r k r v  = eF2/eF1 

In acoustic plasmons the polarisations of the two plasmas partially cancel each other. 
For this reason an appropriate wavevector criterion for the validity of the RPA is that 
(12) should apply for each component separately: 

z,,, = min{(c2 v 2/6) ' I 2 ,  ri'  (c1 v /6) ' I 2 } .  

A number of theories of the electron gas incorporating corrections to the RPA and 
giving an improved description at large wavevector have been proposed; see Singwi and 
Tosi (1981) for a review. The exact analytic continuation of the dielectric functions of 
these theories into the lower half of the complex frequency plane appears to be a more 
difficult task, so we have limited our analysis to wavevectors and densities for which the 
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Figure 9. Acoustic plasmon spectrum for system 
B3. U‘ = Re(acoustic plasmon phase velocity)/ 
un. U” is the corresponding imaginary part, and 
is a measure of damping. z = wavevector/2kn. 
The d-functions are defined in equations (14) and 
(15 ) .ForB3 ,c2v2=1 .92 ,c lv l=0 .16 , rk=0 .5 ,  
r ,  = 0.25 and R = 3. 

1.2 

Figure 10. An example of a system (B12) whose 
acoustic plasmon ends when the lines dl_ and d,, 
are close together. For B12, c2v2 = 1.92, c ,u l  = 
0.42, rk = 1.5, r, = 0.6554 and R = 10.3. 

RPA is approximately valid. 
4.4.2. Acoustic plasmon spectra. In this section we present numerically calculated 
spectra (U’ and U” versus z )  of acoustic plasmons for several sets of the four parameters 
c2u2,  clul ,  r k  and ru that characterise our model. These results provide an overview 
of the possibilities for semi-metals and degenerate semiconductors. Calculations for 
specific substances will be presented in 0 5 and in another paper. 

The task of surveying the possibilities in the four-parameter family of systems is 
simplified by the fact that the zero-wavevector results, u’ (0)  and u‘’(O), depend only 
on two parameters, r,  and R ,  and these results were analysed fully in § 4.3. 

We find numerically that, when an acoustic plasmon exists at all, it exists at zero 
wavevector and the inequality 

is satisfied. That is, the spectrum u’ (z)  always starts with u’(0) somewhere on the 
interval AB in figure 7(b).  The acoustic plasmon at zero wavevector is Landau-damped 
by plasma 1 but not by plasma 2. 

Turning now to z > 0, we may expect the spectrum u ’ ( z )  to be continuous until it 
meets one of the lines d2+(z) ,  d , - (z) .  Then E ’  is discontinuous, and we may anticipate 
either a jump of the acoustic plasmon spectrum, or its disappearance. These expec- 
tations are borne out by numerical calculation. The first critical wavevector, at which 
the first segment of the acoustic plasmon spectrum ends, will be written 
qcl = 2kFZzC1. This first segment is in the region of figure 6 designated 110. Bennacer 
(1987) has shown analytically that a small-z solution does not exist in region I1 11. 

We start the presentation of numerical results with system B3 (c2u2 = 1.92, 
c l v l  = 0.16, r k  = 0.5,  r, = 0.25; these parameters imply R = 3, u 2 / u 1  = 3 and 
m$ /mr = 2). The acoustic plasmon spectrum is shown in figure 9. This system’s 
coordinates in figure 8 ( R  = 3, ru = 0.25) make it nearer to the boundary OA (on which 
U’ = (1 + u ” * ) ~ / ~ )  than to the boundary AB (on which U’ = ( r i 2  + u ” ~ ) ~ ’ ~ ) .  We there- 
fore expect that, as z increases above zero, U‘ will meet the line of discontinuity d2+(z) 

[I + u ” ( o ) ~ ] ’ / ~  < U‘ < [ r i 2  + u f ’ ( ~ ) * I 1 / *  
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Figure 11. Graph for system B11 including part 
of the second segment (broken curves). See text 
fordiscussion.ForBll,c,v, = 1 . 9 2 , ~ ~ ~ ~  = 0.32, 
rk = 1.5, ru = 0.5 and R = 13.5. 

Figure 12. The acoustic plasmon spectrum (sys- 
terns B1 and B2), apart from its cut-off, varies 
only weakly if the density of both plasma com- 
ponents is scaled by the same factor. For B1, 
c2v2 = 0.984, c I v l  = 0.041; for B2, c2v2 = 1.92, 
c l v l  = 0.08; for both, rk = 0.5, ru = 0.125 and 
R = 6 .  

in figure 9, and this is found numerically to be the case. 

for all the systems we have studied, are 
Other features of the results (figure 9) for system B3, which we have found to hold 

(i) U' and U" vary only slowly with z (within the range of validity of the RPA); and 
(ii) both U' and U" have the form a + bz2 for small 2; in the case of U", b > 0 always; 

further, I U " ~  is a decreasing function of z throughout the range 0 < z s zC1. 

If R 6 9, the results are qualitatively similar to those of the system just discussed, 
as may be anticipated from figure 8. In some other systems, the acoustic plasmon 
spectrum ~ ' ( z )  meets the line dl-, instead of the line d2+,  

Figure 10 shows an example (system B12) for which U' meets dl-, but d2+ is near. 
This has no startling effect on the first segment of the spectrum. Another feature of 
system B12 is that acoustic plasmons occur up to reasonably large wavevectors, even 
though ru is not much less than unity. The damping is, however, rather strong. 

Many of the systems studied have second, and sometimes even more, segments at 
large z .  Figure 11 includes the beginning of the second segment for system B11. We 
tried to find system parameters for which the second segment started at a wavevector 
zc2 < z,,,, but although we identified the optimal parameters for this, we found no 
such systems, and indeed no system with zc2 near z,,,. We conclude that a valid second 
segment might conceivably exist in some real systems, but the RPA indications are 
negative. 

In the first two examples given so far (figures 9 and 10) the spectrum comes to an 
abrupt end at a wavevector zcl that is less than z,,,. Thus the sharp cut-off of the 
acoustic plasmon spectrum is for these systems a definite prediction of the theory. In 
other systems, for example B11 (figure 11), the first segment is qualitatively similar 
to those discussed earlier, but z,,, < zcl. 

Figure 12 compares two systems which differ only by a common scaling of density 
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U'( 816) 
I 
I U ' i B l 7 1  
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0.44 

Figure 13. Investigation of the 
dependence of the acoustic plas- 
mon spectrum (systems B16 and 
B17) on the ratio v 2 / v 1  of pocket 
numbers. R = 2, r,, = 0.25 and 
c 2 v z c I ~ I  = 0.02 are the same for 
the two systems; for B16, c2u2  = 
0.2, c ,u l  = 0.1; for B17, c2u2  = 
0.4, c i v l  = 0.05. Since c l / v ,  = r, ,  
u z v I  is determined. It is 0.5 for 
system B16 and 2 for system B17. 

of both plasma components. The features of the reduced spectrum, other than the 
cut-off zc, depend weakly on such a scaling. 

The acoustic plasmon spectrum also depends only weakly on the ratio v z / v l  of 
pocket numbers if R ,  r ,  and c2v2c1v1 are held constant. This is illustrated in figure 13. 

Numerical results for other values of the parameters are presented in Bennacer 
(1987). 

4.5. Summary of properties of acoustic plasmon spectra 

(i) The reduced complex phase velocity U (  = complex phase velocity/uF2) of acoustic 
plasmons as a function of the reduced wavevector z (= wavevector/2kF,) depends on 
four parameters of our model, c2v2 ,  c l v l ,  r ,  and R ,  where v, = number of pockets in 
plasma i (i = 1,2) c, = (2/n)(4/9~r)~/~r&,,  with Y& the usual r, density parameter for 
a single pocket of plasma i ,  r,  = u F ~ / u F ~ ,  and R = (KTM/KTF~)' with KTF! the Thomas- 
Fermi screening wavevector of plasma i .  

(ii) At  zero wavevector U depends only on the two parameters, r ,  and R. Figure 8 
shows the domain of these parameters for which acoustic plasmons exist, and shows 
also contours of constant U'  and constant U" within this domain. 

(iii) When acoustic plasmons exist in a system, the theory predicts a branch 
0 s z s zcl of the spectrum, with a sharp cut-off at zcl. In this branch, U '  is usually 
approximately constant, and 1u"l decreases with increasing 2. Sometimes zcl is less and 
sometimes greater than the limit zmax of validity of the RPA. 

(iv) The theory often produces further segments of the acoustic plasmon spectrum 
at larger 2, but no part of such a segment has even been found with z < zmax. 

(v) Determining u ' (0)  and u"(0) from figure 8,  and sketching U '  = constant until 
the first discontinuity in figure 7(b )  is reached, or to z = z,,, if that is less, is a simple 
procedure which usually predicts the acoustic plasmon spectrum to a useful degree of 
accuracy. Of the four parameters of the full model, the two parameters r ,  and R 
determining the properties at zero wavevector are the most important. 

(vi) The damping of acoustic plasmons is small in the lower left portion of figure 
8, and remains small for all wavevectors up to the sharp cut-off or the RPA limit. 
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Figure 14. The GaAs electron-hole plasma. 

U k- 

Figure 15. Qualitative sketch of the dispersion 
curves, real part (U') of reduced phase velocity 
versus reduced wavevector z of plasma modes in 
a three-component plasma. The first segment of 
a dispersion curve ends when it meets one of the 
lines of discontinuity (. . . ' .  .). Subscripts: op = 
ordinary plasmon, uap = upper acoustic 
plasmon, lap = lower acoustic plasmon. 

5. Extension to three components and application to the GaAs electron-hole plasma 

The photo-excited electron-hole plasma (figure 14) in GaAs studied by Pinczuk et a1 
(1981) (PSW) consists of equal densities of electrons and holes: ne = nlh +nhh, where lh 
and hh stand for light and heavy holes. The electrons come rapidly to equilibrium 
with each other and form a degenerate electron gas. Likewise the holes form a 
degenerate hole gas. Spectroscopy to measure acoustic plasmons (or other properties 
of the electron-hole plasma) is done within the time that the electrons take to relax 
by 'forbidden' transitions to the valence band. 

It is necessary to treat this system as a three-component plasma, for although the 
light holes comprise only 4% of all holes, their neglect perturbs the final result (acoustic 
plasmon velocity) by about 20%. The generalisation of the two-component theory 
given in the preceding sections is therefore presented. The theory assumes that the 
polarisation function of the plasma is the sum of contributions from each component 
separately. This is true if inter-pocket transitions are negligible, which is the case when 
the pockets are separated in k-space by wavevectors (usually - reciprocal-lattice 
vector) larger than the wavevector q of the plasma mode being considered, or are 
separated in energy by an amount greater than hw,  where w is the frequency of the 
plasma mode. Neither of these conditions applies to the lh-hh pair of pockets. 
However, allowance for the Bloch nature of the states implies that the polarisation 
function for lh-hh transitions contains a factor beyond the effective-mass approxi- 
mation used in the preceding sections, namely the square of the overlap integral of 
the Bloch u-functions (Wooten 1972). In the approximation of small q (< reciprocal 
lattice vectors) this integral is 

( k ,  lh1k, hh) = a l h , h h  
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Table 1. Parameters of the GaAs systems and acoustic plasmon results. For both systems 
rkz = 2.88. rkl = 0.986. ru2 = 0.348, ro, = 0.108 and the RPA density condition is c3 S 1.4. 

n,(iOi7 ~ m - ~ )  3 7 

c3 

c2 

C1 

RPA wavevector condition: z C 
z corresponding to q = 74 pm-’ 

Acoustic 
plasmon 
energy (mev) 

Damping: lw”/w’l (present calc., with q = 74,um-I) 

PSW calc. 
PSW expt ‘I Present calc., with q = 74 pm-’ 

2.83 2.13 
0.984 0.742 
0.306 0.231 
0.14 0.11 
0.179 0.135 

3.4 4.6 
‘in agreement’ 

3.0 3.9 

0.16 0.16 

so the lh-hh transitions do not occur. 
Then the generalisation of § 4.1 from two to three components is straightforward. 

The components are labelled with suffix i (= 1,2 ,3) ,  and k F I ,  uF,, m,, eFI are the Fermi 
wavevector, Fermi velocity, effective mass and Fermi energy of component i. The 
labelling is such that uF3 < uFz uF1 .  The mass values are taken, for straightforward 
comparison, the same as those of PSW, namely me = 0.68m0, mLH= 0.075mo, 
mHH = 0.62mo. Then components 1, 2, 3 are e, LH, HH respectively. Component 3 is 
taken to be the reference plasma for the purpose of defining the reduced variables 

r k i  k ~ 3 / k ~ i  ~ O I  = uF3/uF1 (i = 1, 2) .  

The reduced wavevector of the plasma wave is z = q /2kF3 ,  and the reduced phase 
velocity is U = @/quF3. The dielectric function is now 

&(Z ,  U) = 1 + 2 c l g ( r k l z ,  r u l u )  + 2c2&(rk2z, r ~ 2 . ~ )  + 2c3g(z, U) 
since each pocket degeneracy I/, (i = 1, 2, 3) is 1 in GaAs. 

The general features to be expected from the solution of the condition for plasma 
modes, namely E = 0, can be anticipated from the results of § 4. There it was found 
that an acoustic plasmon does not always exist, the system parameters for which it 
exists being shown in figure 8. In a three-component plasma a maximum of three 
plasma modes (which may be named ordinary plasmon, upper acoustic plasmon, lower 
acoustic plasmon) may be expected, with fewer than two acoustic modes existing in 
some cases. This expectation has been verified by numerical solutions in the present 
work. 

Figure 15 shows qualitatively the relation between the real part U ’  of the reduced 
phase velocity of the three possible plasma branches and the six lines of discontinuity. 
(The value of U” that enters is of course that of the plasma mode with which the line 
of discontinuity is currently being compared.) 

We have solved the equation E = 0 for the GaAs electron-hole plasma for several 
values of carrier density, including the two at which PSW claim observation of acoustic 
plasmons. The densities and other parameters are given in table 1. The value 12.9 was 
used for (Hass and Henvis 1962), i.e. the relative permittivity at frequencies below 
the optical phonon frequency (230 meV) of GaAs, because the acoustic plasmons 
turn out with frequencies well below 30 meV, even for the largest practical wavevectors 
and carrier densities. 
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Figure 16. The real part (U') and magnitude of imaginary part ( I u " ~ )  of the reduced phase 
velocity of the acoustic plasmon versus reduced wavevector z in a GaAs electron-hole 
plasma with carrier density n, = 7 X IO" ~ m - ~ .  Conversion of units: q/nm-' = 0.552, 
Zlw/meV = 1 8 . 6 ~ ~ .  

z 

In all of the GaAs electron-hole plasma systems that have been studied, there is 
no upper acoustic plasmon, but there is a lower acoustic plasmon, which will henceforth 
be referred to simply as the acoustic plasmon. 

The acoustic plasmon spectrum for ne = 7 X 1017 cm-3 is shown in figure 16. The 
first segment ends at z = 0.1606, when U' meets the indicated line of discontinuity. A 
second segment of the acoustic plasmon spectrum starts at z = 0.1577, i.e. there is a 
small overlap on the z axis, which is shown on an expanded scale in figure 17. In GaAs 
the discontinuity between segments 1 and 2 is almost certainly too small to be detected 
in the near future. The question whether the discontinuity (sometimes simply the end 
of the first segment with no further solutions) can be observed in other systems will 
be addressed in another paper. 

J 
I 

Figure 17. The overlap region of figure 16, shown 
, , , , , , I  

0158 0 159 0160 
z on an expanded scale. 
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The numerical calculations give second segment solutions for z beyond the edge 
of figure 16, and up to z = 0.5. These larger z-values are, however, beyond the range 
of validity of the RPA. The generalisations to three components of the RPA conditions 
given in 8 4.4.1 are 

where 

rei = rrirUi = eF3/eFi 

R,  = v 3 r ~ , / v i r O i  
] (i = 1,2)  

and 

(The pocket degeneracies v I  are included in these formulae for generality, but are all 
equal to 1 in the GaAs electron-hole plasma.) Equality in equation (20) specialises, 
in the one-component case, to the usual RPA density condition r$ s 1. From experience 
with metals (2 =s r$ 6 6) it is concluded that the densities of the two GaAs electron- 
hole plasma systems considered (table 1) are sufficient for the RPA to be approximately 
valid. 

The spectra for n,/lO1' cm-3 = 3 and 7 are almost the same (in reduced variables). 
At zero wavevector, the reduced phase velocity U' + iu" is independent of density 
(with RI and r,, (i = 1, 2) constant). At z = 0.15 the change of ne/1017 cm-3 from 3 to 
7 produces decreases of 0.7% in U' and 6% in I u ' ' ~ ,  and an increase of 0.5% in z ,  (the 
end of the first segment). This approximate independence of density, when the 
important ratios remain constant, is a general feature, exemplified by figure 12 in the 
two-component case. 

It can be seen from figure 16 that the real part, U', of the phase velocity is nearly 
independent of z ,  up to the RPA limit. PSW found their evidence for an acoustic plasmon 
by back-scattering of 1.916 eV laser light. Using Aspnes and Studna's (1983) value of 
the GaAs refractive index at this frequency, namely 3.83, gives a wavevector q = 
74 pm-' for the created acoustic plasmon. (PSW quote 0.7 X 106 cm-' as the scattering 
wavevector.) The calculated values of plasmon energy and damping for the two 
experimental systems for which PSW claim acoustic plasmons are given in table 1. 

The main source of possible error in the calculations presented here is the fact that 
the wavevector q = 74 pm-' is, for both densities, about equal to the maximum 
wavevector at which the RPA is expected to be valid. This error is not known, and 
might be as high as a few X10%. 

The calculations reported here give acoustic plasmon energies (and phase velocities) 
about 13% less than the calculations of PSW. PSW do not give separate numerical values 
for the measured energies, but say they are in agreement with the calculations. From 
the experimental trace given in figure 2(a) of PSW (ne = 7 x ~ m - ~ )  an error bar of 
about t10% appears reasonable. In the case ne = 3 X cmW3 the reality of a 
resonant response above the noise level (PSW figure l ( b ) )  is not established. Thus the 
calculations presented here are consistent with the limited experimental evidence 
available, The (Landau) damping of the acoustic plasmons has also been calculated 
(table 1) and found sufficiently small to permit detection. 
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There is, however, an important difference of principle between the present 
calculation and the calculation of PSW. The basis of PSW’S calculation is a ‘Pines- 
Froehlich’ approximation 

(21) 2 112 w / q  = -!- w p 2 )  IKTF1 

where wpi and ivTFl are the usual plasma frequency and Thomas-Fermi wavevector 
parameters of component i. The use of (21) is, however, not self-consistent, because 
it is based on the assumption 

( ” F 2  and ”F3) w / q  e “F1 

yet its application to the GaAs electron-hole plasma leads to o/q < uF2, For example, 
when ne = 3 x ~ m - ~ ,  uFz = 1.1 x lo5 m sK1 and w / q  = 8 x lo4 m s-l is obtained. 
The correct conclusion from the finding ‘o/q < uFz’ is that the upper acoustic plasmon 
(which is what (21) is describing) probably does not exist. The numerical solution of 
the exact three-component RPA expression for E shows that there is indeed no such 
solution. The resonant response observed by PSW can, however, be identified (ten- 
tatively) with the lower acoustic plasmon. A decisive demonstration of acoustic 
plasmons should measure o at several q-values and also the density dependence of 
w / q .  For comparison with theory the exact solution of the RPA dielectric function will 
usually be needed, because of the severe conditions (17) for accuracy of the Pines- 
Froehlich approximation. 

6 .  Discussion 

Our model of a two-component semi-metal, which under some conditions sustains 
acoustic plasmons, has four parameters (c2v2,  c l v l ,  ru ,  R ) ,  which are summarised in 
§ 4.5. The set of all possibilities is therefore potentially complicated. We find, however, 
that the general features of acoustic plasmons, within the range for which the RPA is 
valid, are not complicated. They depend principally on only two parameters, ru and 
R ,  and these parameters determine exactly the properties of acoustic plasmons at zero 
wavevector. 

For these reasons we have in this paper emphasised a general survey intended to 
be convenient for the consideration of the prospects for acoustic plasmons in a wide 
range of semi-metals and degenerate semiconductors. 

The evidence for the existence of acoustic plasmons in homogeneous media is 
sparse. (Excitation analogous to acoustic plasmons have, however, been observed in 
multi-layered systems, for example in GaAs/A1,GalKxAs by Olego et a1 (1982).) This 
sparsity may be considered surprising, since acoustic plasmons were predicted long 
ago. Ruvalds (1981) in his review titled ‘Are there acoustic plasmons?’ described them 
as elusive. He also mentioned a factor contributing to lack of success, which is that 
usually acoustic plasmons are not well coupled to several standard probes of condensed 
matter excitations, namely x-rays, neutrons, phonons and fast electrons. Raman 
spectroscopy, angle-resolved electron-energy-loss spectroscopy and inelastic electron- 
tunnelling spectroscopy (IETS) are, however, more suitable, in terms of energy and 
momentum transfer. In the last of these techniques, IETS, momentum resolution is not 
present in the basic form, but can be obtained if the semi-metal electrode of the tunnel 
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diode is a thin parallel-sided size-quantised film (Jaklevic and Lambe 1975, Finkenrath 
and Stoeckel 1987, Cottey et al 1987). 

There is one encouraging indication that acoustic plasmons exist. This was obtained 
(Pinczuk et a1 1981) by Raman spectroscopy on a photo-excited electron-hole plasma 
in GaAs. We reanalysed these results in § 5 ,  allowing for the three-component nature 
of the system. More experimental results, both in GaAs and in other substances, are 
needed before it can be said that acoustic plasmons (their absence in some materials 
as well as their presence in others) are fully understood and tested. We will present 
the results of calculations for other semi-metals and semiconductors in another paper. 

A further reason for slow progress in detecting and testing the properties of acoustic 
plasmons in homogeneous media may be the restricted nature of the solution (18), 
especially if the further restrictions (19) are made, as they often have been. We see 
from our work that the range of parameters predicting moderate or small damping is 
greater than the range obtained from the special case (18). Neither the condition 
r, + 1 (i.e. uF2 4 uF1), nor the condition mT e m ;  is necessary, according to our 
theory. On the other hand, the strip of r,-R space near the edge of the existence 
domain (figure 8) supports acoustic plasmons only for small wavevectors. 
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